Random and Deterministic Digit Permutations of the Halton Sequence*

نویسندگان

  • Giray Ökten
  • Manan Shah
  • Yevgeny Goncharov
چکیده

The Halton sequence is one of the classical low-discrepancy sequences. It is effectively used in numerical integration when the dimension is small, however, for larger dimensions, the uniformity of the sequence quickly degrades. As a remedy, generalized (scrambled) Halton sequences have been introduced by several researchers since the 1970s. In a generalized Halton sequence, the digits of the original Halton sequence are permuted using a carefully selected permutation. Some of the permutations in the literature are designed to minimize some measure of discrepancy, and some are obtained heuristically. In this paper, we investigate how these carefully selected permutations differ from a permutation simply generated at random. We use a recent genetic algorithm, test problems from numerical integration, and a recent randomized quasi-Monte Carlo method, to compare generalized Halton sequences with randomly chosen permutations, with the traditional generalized Halton sequences. Numerical results suggest that the random permutation approach is as good as, or better than, the “best” deterministic permutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on scrambled Halton sequences

Halton’s low discrepancy sequence is still very popular in spite of its shortcomings with respect to the correlation between points of two-dimensional projections for large dimensions. As a remedy, several types of scrambling and/or randomizations for this sequence have been proposed. We examine empirically some of these by calculating their L4and L2-discrepancies (D* resp. T*), and by performi...

متن کامل

Randomized Halton Sequences

The Halton sequence is a well-known multi-dimensional low discrepancy sequence. In this paper, we propose a new method for randomizing the Halton sequence: we randomize the start point of each component of the sequence. This method combines the potential accuracy advantage of Halton sequence in multi-dimensional integration with the practical error estimation advantage of Monte Carlo methods. T...

متن کامل

On the Performance of the Shuffled Halton Sequence in the Estimation of Discrete Choice Models

The area of travel demand analysis has in recent years been greatly enriched by the development of new model forms that can accommodate complex patterns of substitution and taste variation. However, this added flexibility comes at a cost of greater complexity in estimation, to the degree that these models need to be estimated through simulation. While basic Monte-Carlo integration can lead to a...

متن کامل

Generalized Halton Sequences in 2007: A Comparative Study

Halton sequences ([14], 1960) have always been quite popular with practitioners, in part because of their intuitive definition and ease of implementation. However, in their original form, these sequences have also been known for their inadequacy to integrate functions in moderate to large dimensions, in which case (t, s)-sequences like the Sobol’ sequence [32] are usually preferred. To overcome...

متن کامل

Good permutations for scrambled Halton sequences in terms of L2-discrepancy

One of the best known low-discrepancy sequences, used by many practitioners, is the Halton sequence. Unfortunately, there seems to exist quite some correlation between the points from the higher dimensions. A possible solution to this problem is the so-called scrambling. In this paper, we give an overview of known scrambling methods, and we propose a new way of scrambling which gives good resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009